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Transitions in a self-propelled-particles model with coupling of accelerations
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We consider a three-dimensional, generalized version of the original self-propelled-particles (SPP) model for
collective motion. By extending the factors influencing the ordering, we investigate the case when the move-
ment of the SPPs depends on both the velocity and the acceleration of the neighboring particles, instead of
being determined solely by the former one. By changing the value of a weight parameter s determining the
relative influence of the velocity and the acceleration terms, the system undergoes a kinetic phase transition as
a function of a behavioral pattern. Below a critical value of s the system exhibits disordered motion, while
above it the dynamics resembles that of the SPP model. We show that the critical value of the strategy variable
could correspond to an evolutionary optimum in the sense that the information exchange between the units of

the system is maximal in this point.
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I. INTRODUCTION

Collective motion of organisms (e.g., fish schools, bird
flocks, bacterial colonies) exhibits a large variety of emer-
gent phenomena [1-8]. Synchronized motion, symmetrical
group formations (e.g., V shaped), or swirling patterns
emerge in spite of the apparently simple behavioral rules of
the individual flock members [9-14]. The self-propelled-
particles (SPP) model was proposed by Vicsek et al. [15] to
describe the onset of ordered motion within a group of self-
propelled particles in the presence of perturbations. Taking
into account the effects of fluctuations inevitably present in
biological systems was an essential generalization of the pre-
viously deterministic flocking models such as that of Rey-
nolds [16]. The original model considers pointlike particles
moving at constant velocity on a two-dimensional surface
with periodic boundary conditions. The only rule is that at
each time step every particle approximate, with some uncer-
tainty, the average direction of motion of the particles within
its neighborhood of radius R. This model exhibits spontane-
ous self-organization; by decreasing the noise parameter, the
system undergoes a kinetic phase transition from a disor-
dered state to an ordered one where all the particles move
approximately in the same direction. Due to its simplicity
and analogy with biological systems comprised of many, lo-
cally interacting units, the SPP model has emerged as a
widely used model for phase-transition-like ordering in sys-
tems exhibiting flockinglike behavior [17-27].
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The individually based behavioral rules determining col-
lective motion are of particular interest. Important elements
of these behavioral rules are the nature of the perceived in-
formation and the affected behavioral traits [28—30]. A fre-
quent assumption in models is that the information perceived
by the particles is restricted to the velocity and the relative
distance of their neighbors. The interaction range is usually
defined by metric distances, but Ballerini et al. [28] recently
showed that topological distance may be the one factor de-
termining the flocking of starlings. The assumption that par-
ticles react only to momentary behavioral clues may not
describe a number of biologically relevant situations ad-
equately. We expect that the behavior of the SPP model will
be significantly extended if we also incorporate a term cor-
responding to memory on short time scales. This can be
achieved by introducing an acceleration term into the equa-
tions. This is equivalent to separating the time scales by as-
suming that the particles differentiate between two kind of
information: their actual velocity and the recent change in
their direction of motion. For example, in the case of birds,
reacting to acceleration may mean that birds can give signals
to their neighbors about their intended flight maneuvers by
quickly modifying their direction of motion.

The reasons behind particular manifestations of collective
motion patterns are only partially understood. It seems that,
for example, the various interpretations of the V-shaped for-
mations displayed by large migrating birds still remain after
several decades of possible explanations (see, e.g., [31,32]).
Patterns of collective motion involving sharp turns of the
whole flock still represent a beautiful challenge. Observa-
tions of rock doves [33] and starlings (see, e.g., [28]) suggest
a rich interaction of birds within the flocks such that they
seem to be capable of adopting the same direction of motion
within a tiny fraction of a second.
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II. MODEL

In the three-dimensional, scalar noise (SNM) version [34]
of the original SPP model [15], the particles are assumed to
move with a constant velocity v and their positions are up-
dated simultaneously according to

x;(t+ Ar) =x,(1) + v;(1)At, (1)

where x; and v; are position and velocity of particle i, respec-
tively. The time increment is set to be Ar=1. Each particle is
assumed to move, with some uncertainty, in the average di-
rection of all the particles within a fixed neighborhood of
radius R=1. Hence the new velocity is given by

vilt+An) =v- M(e, &) - N(v(1)); r), (2)

where v is the absolute value of velocity, M(e, &) is a rota-
tional tensor representing a random perturbation, (v(?)); z de-
notes the average velocity of all particles around particle i
within radius R including particle i itself, and N(u)=u/|u].
M(e, &) performs a rotation of angle & around a vector e; £ is
a uniform random value in the interval [-n, 77|, whereas e
is a random unit vector chosen uniformly from the set of
vectors perpendicular to N({(v(7)), z). The order in which (1)
and (2) are calculated has some quantitative effects on the
results (see later).

Here we introduce the acceleration-coupled SPP (AC-
SPP) model, being a modified version of the SNM, in which
the velocity vector v,(£+Af) is a function of both the velocity
v(#) and the acceleration a(f)=[v(r)—v(t—Ar)]/At of the
neighboring particles. Then Eq. (2) becomes

vilt+An)=v- M(e, &) - N(s - (v(1); g + (1 =) - a()A1); ),
3)

where s € (0,1] is a so-called strategy parameter expressing
the relative influence of the acceleration and velocity tags on
the velocity vector of the focal particle. The acceleration
term is calculated for every particle separately. In Eq. (3) we
average this quantity for only those particles which are
within a range of radius R of the ith particle in time step ¢
(including particle i itself). Initially we have N=pL?® ran-
domly distributed particles, where L and p stand for box size
and particle number density, respectively. The bounding box
has periodic boundary conditions. The velocity parameter
used in the simulations is v=0.1, corresponding to the low-
velocity regime [25].

Taking into account the acceleration in a separate term has
various possible functions. As for the contribution of the ith
particle, it corresponds to a memory effect: a given particle,
if it has no neighbors, has a tendency to keep on turning as it
did in the previous time step (see also [30]). Perhaps more
importantly, the average turning rate of the neighbors has
now a separated effect on the turning rate of the ith particle.
In the limit where is s close to 1, the AC-SPP model is very
much like the original SPP model, while for s<<1 the accel-
eration term dominates and instantaneous turning of the
neighbors has a strong effect on the trajectory of the ith
particle. We quite naturally assume that the velocity can be
associated with the actual “state” of a particle. Acceleration
is already a derivative (both literally and on general terms) of
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FIG. 1. (Color online) Average velocity {¢) as a function of the
strategy variable s. The data points were obtained by averaging the
results of 12 simulations, using the parameters L=100, p=0.16, and
n=1/9, with a relaxation time of 7,,,,=10 000 time steps and av-
eraging over an additional 7,,,=10 000 time steps.

the state and can be looked at as a separate feature influenc-
ing the state of a particle. For example, in the case of birds,
we assume that the degree to which birds reflect upon the
changing of the flight direction of the other birds nearby can
be separated from the shear tendency to follow the neigh-
bors. We say that being sensitive (e.g., overreacting) to di-
rectional changes is a different behavioral pattern from not
paying extra attention to this aspect of the motion. We asso-
ciate, for example, with such a behavioral pattern a short
turning period of a bird flying in a flock and giving signs for
its neighbors of its intended changing of the direction of
flight.

We characterize the collective motion of particles by the
average velocity of all particles ¢, defined as

] N
<P=N zvi’

with N denoting the number of particles in the system. This
order parameter can take any value in the range [0,1] and
expresses the tendency of particles to move in the same di-
rection. If the particles move randomly, ¢=0, whereas if ev-
ery particle moves in the same direction, ¢=1. {¢) was ob-
tained by averaging over 12 individual runs, each recorded
after a relaxation time to stationarity 7,,,, and with time
averaging over an additional 7, time steps.

III. RESULTS

At first, we investigated the dynamics of the system at
different values of the strategy variable s at fixed density and
noise values: p=0.16 and 7=1/9. The density was chosen to
be high enough to get flocking, but also tractable in computer
simulation. The noise value was a typical value from the
ordered state of the original SPP model (s=1). We found that
by increasing s the system undergoes a phase transition; be-
low a critical value s, the ordering, expressed by ¢, is neg-
ligible, while above s,. the level of order increases rapidly as
a function of s (Fig. 1). This is a novel type of phase transi-
tion since it corresponds to a phase change due to a change
in the relative strength of a behavioral pattern.
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FIG. 2. (Color online) Probability density function (PDF) of the
order parameter ¢. Parameters as in the previous plot. The one-
humped distributions in a range of s values close to the critical one
(s.=0.59) suggest a second-order phase transition.

In order to determine the nature of the phase transition,
we also calculated the probability density function (PDF) of
¢ and the Binder cumulant G at different strategy values.
The Binder cumulant, defined as G=1-{¢*)/3(¢*? mea-
sures the fluctuations of the order parameter and can be used
to distinguish between first- and second-order phase transi-
tions [38]. In case of a first-order phase transition, G exhibits
a characteristic minimum, whereas in case of a second-order
transition this sharp minimum is absent. In our case the PDF
was unimodal, and G did not have a sharp minimum around
s., both indicating a second-order phase transition (Figs. 2
and 3). G was monotonously increasing, as was observed
already in a three-dimensional SNM model with continuous
phase transition [34].

Consequently, near the critical point, the order parameter
obeys the scaling relation

o~[s—s.p.m°, (4)

where [ is the critical exponent. The critical values s. and B
were determined by plotting log(¢) as a function of log[(s
-s.)/s.] (Fig. 4). s, was obtained by finding the value where
the plot was the straightest in the relevant region, whereas
the critical exponent is equal to the slope of the fitted line.
We obtained 5.=0.590*+0.002 and B=0.35%0.05. The
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FIG. 3. (Color online) The Binder cumulant G as a function of
the strategy variable s. The dotted lines at 2/3 and 4/9 indicate the
theoretical value in the case of the ordered and totally disordered
states, respectively. Parameters as in the previous plots. The ab-
sence of a sharp minimum indicates a second-order phase transition.
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FIG. 4. (Color online) Average velocity values as a function of
the distance from the critical point. The fitted line, with s,
=0.590 = 0.002, had a slope of 8=0.35*0.05. Parameters as in the
previous plots.

value B=0.35 is definitely different from 0.5. The latter
value would correspond to bifurcation-type instability or to a
mean-field solution for which large, nontrivial fluctuations
(such as a widely varying size of flocks moving in different
directions) at the transition point would not occur. Further-
more, since in the case s=1 (no acceleration term) the simu-
lations resulted in an estimate 8=0.42 for the behavior of the
order parameter as a function of the magnitude of perturba-
tions, we propose that the nature of the transition as a func-
tion of the weight of the acceleration term is different (seems
to indicate a different universality class) from the transition
as a function of the noise.

The critical value of the transition depends on both the
density and the noise parameters. Although it needs some
careful inspection, Fig. 5 shows that s, is decreasing with
increasing density and increases for increasing noise values.

The order variable ¢, by itself, provides a poor descrip-
tion of the two states; hence, we also calculated other statis-
tics. The sinuosity of the particle trajectories was expressed
by their average curvature defined as 7\=1%12N%-

Two other statistics ¢ and u were used to measure the
information exchange between the particles. ¢ is defined as
the average number of different (formerly not came across)
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S

FIG. 5. (Color online) Border surface between the ordered and
disordered phases in the s, p, 7 parameter space. The ordered
({@)=0.01) and disordered ({¢)<0.01) states are indicated by
heavy and light dots, respectively. Squares show the critical noise
values 7.(s,p) obtained from the plot of log(¢p) as a function of
log[(7%,— 1)/ 7] for each s and p pair. L=100.
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FIG. 6. (Color online) The curvature of trajectories, \, as a
function of the strategy variable s. The dotted line at s.=0.590
indicates the position of the critical point for ordering. Parameters
as in the previous plots.

particles encountered—i.e., being within a distance R—by a
focal particle during a given time interval. In the simulation
we calculated ¢ as an average value for 100 initially ran-
domly chosen particles. Although the quantity of ¢ depends
on the chosen time interval, its monotonicity as a function of
s is independent of it. u was used to evaluate the speed of
information propagation as follows. Initially 1% of the par-
ticles held the information. The information was transmitted
between particles via encounters between information hold-
ers and other particles. This way sooner or later every par-
ticle became an information holder. u was defined as the
time needed for at least 90% of the particles to become in-
formation holders. This aspect of the simulations can also be
imagined as tracing of the spread of a disease in a population
of flocking units. A more complete version of spreading of an
infectious disease in a system of diffusing particles was stud-
ied by Gonzalez et al. [39].
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All three statistics (\), (¢), and {(u) were obtained by
averaging over 12 individual runs, each after a relaxation
time of 7,,,,=10000 and with an averaging time of T,
=10 000.

The curvature of the trajectories decreases with the strat-
egy variable (Fig. 6). The large curvature at low s values
indicates in this case that particles move in small circles (Fig.
7). It is because the large influence of the acceleration term
results in continuous turning. This turning is synchronized
among neighbors; i.e., their acceleration and velocity vectors
become the same, resulting in a particle cloud consisting of
separated groups of particles, each containing circling par-
ticles. By increasing s the radius of these circles increases,
until the circling groups overlap and start to interact with
each other. At a critical point the circles overlap so much that
neither their position nor their composition remains the
same; in other words, the circling groups lose their identity
and the particles start to move sinuously. At large s values
the movement becomes ordered; all particles tend to move in
the same direction, similar to the ordered phase of the SNM
model at small velocities.

The dynamics of the system is well reflected in the infor-
mation propagation (Fig. 8). Both ¢ and u have low values
at small s and have a maximum value around s.. Closely
related ideas have been discussed in [40,41]. This result
holds for all density and noise parameter values we have
investigated. The curves of ¢ and u were very similar, indi-
cating that both are proper measures of information propaga-
tion.

In the original SPP model [15] [here, following the nota-
tion of Huepe and Aldana [26], called the original Vicsek
algorithm (OVA)], the positions of the particles at 7+ At de-
pend on two previous time steps ¢ and 7—At. In the literature
some authors have implemented the model in a slightly dif-

~ e~

FIG. 7. Shown are the positions and trajectories of particles for different strategy values. These images were obtained by using
perspective projection of the three-dimensional data onto two dimensions. This is the view we have if we look at the transparent simulational
box with its closest edge being vertical and centered at the observational field. Subfigures show the typical behavior (a), (d) below, (b), (e)
near, and (c), (f) above the critical point, respectively. (a)—(c) Positional data of the particles shown as birds. (d)—(f) Each curve shows the
trajectory of a particle over 60 time steps after reaching steady state (r=20 000). Different shades of gray indicate the time past, with darker
tones denoting more recent positions. (a), (d) Below the critical point, at s=0.5, the particles move in circles. (b), (¢) Near the critical point,
at s=0.53, the particles move sinuously. (c), (f) Above the critical point, at s=0.9, the particles move in the same direction. L=20, 7

=1/6, other parameters as in the previous plots.
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FIG. 8. (Color online) Information exchange between particles
() as a function of the strategy variable s. The curve for u was
very similar (not shown). Parameters as in Fig. 1.

ferent way [24,35-37], where the order of the position and
the velocity update are changed. Huepe and Aldana [26] refer
to this as the standard Vicsek algorithm (SVA), and they
report that the local density is different in the OVA and the
SVA, while in both cases the average number of interacting
neighbors is unreasonably high because of the lack of a re-
pulsive effect. By analyzing the AC-SPP model with an
SVA-like updating rule (Fig. 9), we find that the behaviors of
the order parameter, the Binder cumulant, and the average
curvature are very similar to those in the OVA, but the criti-
cal s value is lower. The information exchange rate is, how-
ever, rather different, and the maximum value of ¢ is much
higher in case of the SVA. The maximum value of the infor-
mation exchange compared to the value at s=1 in case of the
OVA is 2" /yP% =14, while in case of the SVA
SV 4 =10.1. At s=1, where the AC-SPP model is con-
gruous to the original SPP model, the rate of information
exchange is similar in the OVA and the SVA.

IV. CONCLUSIONS

In conclusion, we investigated the statistical properties of
a three-dimensional self-driven particles system (AC-SPP
model) designed to be an improved model for the collective
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FIG. 9. (Color online) The order parameter ({(¢), X marks), the
Binder cumulant (G, triangles), the information exchange between
particles (i, circles), and the average curvature of trajectories (\,
squares) as a function of the strategy variable s in case of the AC-
SPP model with SVA. Compared to the OVA in the case of the SVA,
the critical strategy value is at lower s, but the behaviors of the {¢),
G, and \ functions are very similar. The information exchange be-
tween particles has its maximum value near the critical point, but it
is much more sensible for s. Parameters as in Fig. 1.

motion of living beings and possibly nonliving units (robots).
The ordering of particles exhibited a second-order phase
transition as a function of the control parameter correspond-
ing to a behavioral strategy in our case.

We found that the information exchange between particles
was maximal at the critical point. Due to the important role
of information exchange in animal societies, this might indi-
cate that the critical point corresponds to an optimal behav-
ioral strategy. In a more general context this result suggests
that biological evolution may drive individual trait values
towards critical ones. However, the validity of this sugges-
tion requires further investigations within an evolutionary
game theoretical framework.
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